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Simple Summary: An increasing number of cancer cases has been reported throughout the years.
Most cancers are linked to unhealthy lifestyles and genetic inheritance. Nevertheless, unknown to
many, infection from microorganisms (bacteria, viruses, fungi) and sometimes, parasites, can also
lead to cancer development. For these cancers, the infection may inflict mechanical injury on host
cells, whilst gene products or protein secretion from the microorganism further alters host cell activity,
leading to abnormal cell development and growth. Due to the cancer-causing characteristic of these
microorganisms, they have been classified as definite biological agents that cause cancer. This review
describes the cancer development process caused by some of these microorganisms and highlights
strategies to prevent or treat the associated cancers.

Abstract: Cancer is a global health problem associated with genetics and unhealthy lifestyles. In-
creasingly, pathogenic infections have also been identified as contributors to human cancer initiation
and progression. Most pathogens (bacteria, viruses, fungi, and parasites) associated with human
cancers are categorized as Group I human carcinogens by the International Agency for Research
on Cancer, IARC. These pathogens cause carcinogenesis via three known mechanisms: persistent
infection that cause inflammation and DNA damage, initiation of oncogene expression, and im-
munosuppression activity of the host. In this review, we discuss the carcinogenesis mechanism of
ten pathogens, their implications, and some future considerations for better management of the
disease. The pathogens and cancers described are Helicobacter pylori (gastric cancer), Epstein-Barr
virus (gastric cancer and lymphoma), Hepatitis B and C viruses (liver cancer), Aspergillus spp. (liver
cancer), Opisthorchis viverrine (bile duct cancer), Clonorchis sinensis (bile duct cancer), Fusobacterium
nucleatum (colorectal cancer), Schistosoma haematobium (bladder cancer); Human Papillomavirus
(cervical cancer), and Kaposi’s Sarcoma Herpes Virus (Kaposi’s sarcoma).

Keywords: infections; pathogens; carcinogenesis

1. Introduction

Cancer is a disease in which cells divide in an uncontrolled manner and have the
ability to invade nearby tissues. The disease is a significant cause of morbidity and
mortality. From the latest annual cancer case report of 2020, the World Health Organization
(WHO) estimated more than 19.2 million new cases being diagnosed and 9.9 million
mortalities from cancer [1]. Carcinogenesis and the progression of cancer are usually
undetectable externally; many cancers, such as pancreatic and colorectal cancers (CRC)
are undiagnosed until they reach a later stage [2,3]. Risk factors associated with lifestyle,
diet, and genetic predisposition have been identified to contribute to carcinogenesis [4].
Increasingly, infections caused by pathogenic microorganisms and parasites have also been
linked to cancer [5–9].

Microorganisms have been primarily studied for their roles in causing infection.
However, since the early 20th century, the association of some infectious agents with
cancer has been reported [10]. Beginning in the 1900s with a report by Askanazy, the link
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between Opisthorchis felineus infection and liver cancer, in addition to the discovery of
bladder cancer-causing Bilharzia infections (schistosomiasis), have been highlighted [11].
Subsequently, the remarkable finding of oncolytic viruses was reported by Peyton Rous
in 1911 in an avian model [12]. Fifty years later, Anthony Epstein proposed and proved
the association of the Epstein-Barr virus (EBV with Burkitt lymphoma [13,14]). Infectious
agents cause carcinogenesis largely via three mechanisms [15]. The first mechanism is via
persistent infection which gives rise to inflammation and cell damage, where accumulative
cell damage leads to mutations and carcinogenesis. Alternatively, infectious agents might
cause the expression of oncogenic genes of their host and lead to cancer. In the third
scenario, immunosuppression caused by infectious agents leads to carcinogenesis in the
host via immunologic recognition disruption [15]. Carcinogenesis tropism is observed in
cancers caused by infectious agents, whereby different agents are associated with different
types of cancer (Figure 1). This review will describe ten infectious agents whose roles have
been confirmed in carcinogenesis.
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2. Gastric Cancer

Gastric cancer (GC) ranked fifth in worldwide cancer incidence (1,089,103 new cases)
and third in cancer-related mortality (768,793 mortalities) in the year 2020 [1]. Risk factors
for GC include lifestyle modifiers such as dietary habits and smoking, family history,
and socioeconomic status [16–18]. In addition, infection with Helicobacter pylori and EBV
have also been reported to be risk factors for the occurrence of GC [19]. H. pylori infection
is attributed to almost all GC cases; EBV contributes to less than 10% of incidences [20,21].

2.1. Helicobacter pylori

Helicobacter pylori is a Gram-negative microaerophilic bacterium that could be isolated
from the upper gastrointestinal tract of more than 50% of the population [22]. It can be
transmitted through saliva, vomit material, and feces [23]. The bacteria’s chemotaxis
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properties allow it to detect pH changes in the stomach and subsequently burrow into the
epithelial layer to escape the acidic mucosal lining [24]. In addition, H. pylori secrete urease
which breaks down gastric urea to produce carbon dioxide and ammonia, neutralizing the
acidic pH of the environment [25]. While these properties allow the bacteria to survive
in the stomach and duodenum, the production of ammonia is toxic to host epithelial
cells, whereby long-term colonization of H. pylori causes inflammation and results in
chronic gastritis [26,27].

For hosts who carry the cag pathogenicity island (PAI)-positive H. pylori, secreted
CagA disrupts cellular processes and host cell gene transcription via tyrosine phosphoryla-
tion of SHP-2 and kinases, causing neoplastic morphological changes and cell prolifera-
tion [28–30]. At the same time, the type IV secretion system expressed by cag PAI injects
bacterial peptidoglycan into gastric epithelial cells, stimulating cytokine expression and
further inflammation [31]. In addition, 50% of all H. pylori strains secrete VacA, a virulence
factor that induces epithelial cell vacuolization and inhibits T-cell activation and prolif-
eration, aiding the bacteria’s gastric colonization and leading to peptic ulceration [29,32].
Subsequently, if lifestyle or genetic risk factors are present, for hosts who are low acid
producers, gastric cancer might occur, while high acid producers might develop duodenal
cancer [33]. Association of H. pylori and gastric inflammation has been reported since
1982, and the bacteria was later categorized as a group I (definite) carcinogen by the IARC
in 1994 [34,35].

2.2. Epstein-Barr Virus (EBV)

The Epstein-Barr virus (Human herpesvirus 4) is usually associated with Burkitt’s
lymphoma [14] and is the etiological agent of infectious mononucleosis. It is a capsulated
DNA virus and spreads via body fluids such as saliva and genital secretions. It has been
reported that most people will be infected with the virus at some point in their lives.
After infection, the virus may remain dormant in the B cells of its immunocompetent host,
until it is reactivated [36]. Besides lymphoma, EBV infection has also been associated
with the occurrence of GC [37]. About 9% of GCs reported an EBV etiology, where meta-
analyses on EBV-associated gastric cancers (EBVaGC) showed, intriguingly, slightly higher
prevalence in young males of American and European populations [21,38] and a lower
incidence in China [39].

While H. pylori infection is mostly associated with tumors in the gastric antrum,
EBVaGCs are usually located at non-antrum sites of the stomach [40]. Compared to
H. pylori-associated gastric cancer in which carcinogenesis is caused by the bacteria’s
toxin secretion and ammonia production, EBVaGCs are associated with host genome
methylation via EBV modulation [41–43]. In EBVaGC, the virus is orally ingested and
reaches gastric epithelial cells via saliva carriage. The virus enters epithelial cells via the
host cell receptors with B cell mediation, and is subsequently assembled into circular mini
chromosomes (“episomes”) [44,45].

Once latent infection is established, viral transcripts and proteins contribute towards
carcinogenesis in the stomach [45]. Viral non-coding RNAs, EBER-1 and -2, promote tu-
mor cell proliferation and migration, while the protein EBV-determined nuclear antigen-1
(EBNA1) induces reactive oxygen species (ROS) accumulation and at the same time impairs
the host response towards DNA damage [46–49]. Importantly, EBV latent membrane
protein 2A (LMP2A) induces epigenetic changes to the host genome via methylation of
CpG islands, inactivating tumor suppressor genes such as PTEN and tumor-associated
antigens [41,50]. In fact, host genome methylation is a common characteristic of EBVaGC,
in which besides PTEN, promoter hypermethylation of CDH1, p14ARF, p15, p16INK4a,
and p73 tumor suppressor genes has also been associated with EBV infection [43]. In addi-
tion to host genome methylation, viral genome methylation further allows the pathogen to
escape host immune detection. Recent research shows the involvement of EBV miRNAs,
where the non-coding RNAs have been reported to upregulate cancer cell proliferation,
inhibit apoptosis, and suppress interferons (IFN) signaling [51–53].
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3. Liver Cancer

Hepatocellular carcinoma (HCC), commonly known as primary liver cancer has a
survival rate of 6 to 20 months, and is one of the cancers with high mortality rates [54,55]
with 830,180 recorded mortalities and 905,677 incidents in 2020 [1]. The disease occurs most
often in individuals who have a history of chronic liver diseases such as cirrhosis [56,57].
Alcohol consumption, smoking, and metabolic conditions such as obesity and type 2
diabetes are HCC co-clinical factors. In addition, chronic infection by the hepatitis virus
and consumption of food contaminated with aflatoxin from the Aspergillus fungi confers a
high risk towards the development of HCC [58]. All the above risk factors subject the liver
to a state of chronic inflammation, with ongoing cycles of oxidative stress, DNA damage,
hepatocyte turnover, and fibrosis [59].

3.1. Hepatitis Virus

There are five hepatitis viruses (A–E); two of them, hepatitis B (HBV) and C (HCV),
are associated with HCC [56]. Despite their tropism for the liver, HBV and HCV are from
different families, namely, Hepadnaviridae for HBV and Flaviviridae for HCV. The HBV
genome consists of double-stranded DNA with reverse transcriptase, while HCV is a
single-strand RNA virus. These two viruses are transmitted through blood. Nevertheless,
HBV can also spread via body fluids during sexual intercourse or vertical mother-to-
infant transmission [60].

Epidemiological studies suggest chronic HBV infection as the main risk factor in HCC
development [61–63], where low copy numbers of the virions are sufficient to initiate
infection [64]. Once it enters the host, the virus makes its way to the liver, binds to
hepatocytes via the NTCP (sodium taurocholate co-transporting polypeptide) receptor,
enters the cell via endocytosis, and proceeds to the nucleus [65]. Viral DNA transcription
and protein translation are then initiated [63]. During active infection, the newly generated
viral DNA will be integrated into the host genome, leading to chromosomal instability
(CIN), insertional mutagenesis, and cis-activation of tumor-associated genes. Interestingly,
no consistent singular target gene for HBV DNA integration has been identified; though
pathways associated with AKT activation, mitotic cell cycle, AXIN1, and DNA imprinting
have been reported to be dysregulated by the infection [59]. In addition, binding of the
Hepatitis B X protein (HBx), to the host genome changes the expression of miRNAs and
further disrupts histone methyltransferases activity, leading to cell expression pattern
changes in HCC pathophysiology [66,67]. In addition, although the full extent of Hepatitis
D virus (HDV)-associated HCC pathogenesis remains to be investigated, studies so far have
found that co-infection of the virus with HBV will increase hepatocyte necro-inflammation,
leading to cirrhosis and HCC [68,69].

In chronic HBV infection, the host experiences phases of “immune tolerance,” “immune
reactive,” “inactive carrier,” “chronic hepatitis,” and “HBV surface antigen-negative” [70].
The risk for HCC is higher at both “immune reactive” and “chronic hepatitis” phases.
During the “immune reactive” phase, the virus infects hepatocytes and integrates into host
DNA. Subsequently, during “chronic hepatitis,” HBV replication is lowered, allowing viral
mutants to escape host immune response. Nevertheless, this will still drive inflammation
and hepatitis progression in the host via continuous activation of impaired anti-viral im-
mune response, which in turn exacerbates inflammation and hepatocyte turnover, causing
clonal expansion of premalignant cells containing HBV-integrated host DNA and HCC [71].

Compared to HBV infection, HCV does not integrate into the host genome. There are
two phases of HCV infection: acute and chronic [59]. The risk for HCC increases during
the chronic phase, and may increase as much as 17-fold [72]. The virus is transcribed once
it reaches and enters the host’s hepatocytes [73,74]. HCV viral factors are then implicated
in the interference of a variety of molecular pathways, including cell metabolism, genetic
repair, apoptosis, and induction of ROS activity [75].

Progression of HCV infection induces metabolic reprogramming of hepatocytes, caus-
ing hepatosteatosis where there is a deposition of excessive triglycerides in cells [76].
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Viral phosphoprotein NS5A further activates the PI3K/AKT signaling pathway, which is
integral to HCC development. Viral proteins and their genome block tumor suppressors
such as p53 and the epidermal growth factor receptor (EGFR), and induces ROS activity
via the mediation of NADPH oxidase-1 and -4 (NOX) [77]. Chronic HCV infection also
triggers both innate and adaptive immunity of the host, where inflammatory cytokines
including tumor necrosis factors (TNF), interleukin (IL), and lymphotoxins (LT) are in-
creased due to activation of inflammatory pathways such as NF-κB [78]. All the above
produces a carcinogenic microenvironment promoting genetic instability and the develop-
ment of hepatic stellate cells (HSCs) [79,80]. Epithelial to mesenchymal trans-differentiation
(EMT) changes in HSCs are regulated by TGF-β growth factor then further contributes
to carcinogenesis [81].

3.2. Aspergillus spp.

Two species from the Aspergillus fungus, namely Aspergillus flavus and Aspergillus para-
siticus produce the genotoxic compound aflatoxin, which can be found in improperly stored
food crops, such as rice, wheat, millet, corn, and peanuts [82–84]. The toxin, when ingested
via food supplies, may cause acute aflatoxin poisoning and lead to abdominal pain and
vomiting. Serious cases of acute exposure have been reported to cause pulmonary edema,
fatty liver, liver necrosis, and even death [85]. Intriguingly, the toxin has a tropism for the
liver, where chronic exposure to the toxin has been proven to increase HCC risk in humans
and many species of animals. Epidemiologically, aflatoxin exposure is linked to HCC in
many West African countries due to inappropriate post-harvest processing; in addition, de-
veloping countries have a higher incidence rate, where low-income populations sometimes
resort to long-term consumption of moldy food produce to avoid starvation [86–88].

Although there are four aflatoxins (AFB1, AFB2, AFG1, and AFG2), AFB1 is the most
common and has been strongly associated with HCC [85]. Once ingested, AFB1 will
find its way to the liver and is subsequently activated by microsomal enzymes, forming
DNA adducts of trans-8, 9-dihydro-8- (N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N7-dG),
and trans-8, 9-dihydro-8- (2, 6-diamino-4-oxo-3, 4-dihydropyrimid-5-yl-formamido) -9-
hydroxy aflatoxin B1 (AFB1-Fapy-dG) [89]. AFB1-N7-dG has been reported to cause G > T
mutagenesis [90], while AFB1-Fapy-dG may cause all G > T, G > A, G > C and single
nucleotide deletions in p53 [91,92]. In addition to the formation of DNA adducts, AFB1 has
also been found to cause mutations (AGG > AGT) at codon 249 of p53, leading to arginine
substitution with serine (R249S) [92,93]. Hosts without proficient nucleotide or base
excision repair mechanisms, together with by-pass by the error-prone DNA polymerase
ζ during DNA replication will lead to clonal expansion of hepatocytes with p53 allelic
deletions. Coupled with chronic inflammation due to HBV or HCV infections, chronic
hepatitis and/or liver cirrhosis will occur, with HCC as a sequela.

4. Bile Duct Cancer

Risk factors for bile duct cancer or also known as cholangiocarcinoma (CCA) include
older age, smoking, chronic liver disease, and primary sclerosing cholangitis (PSC) [94].
The cancer remains rare in the western hemisphere. Nevertheless, in southeast Asia,
the prevalence is higher, where the disease is usually caused by helminth (parasite) infection.
Opisthorchis viverrini and Clonorchis sinensis, two species of liver flukes, are the causative
pathogens via food contamination [95]. Duration and intensity of the infection, host and
liver parasite genetics, diet, and environmental exposure determine if the infection will
lead to CCA [96]. Even though the etiology of liver fluke-associated CCA is known,
many patients present at the later stages of III and IV with unresectable tumors, rendering
the disease with poor clinical outcomes [95]. Both parasites are classified as group I human
carcinogens by the IARC in 2012.
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4.1. Opisthorchis viverrini

Opisthorchis viverrini was first discovered in Southeast Asia in 1886 in a fish by the
parasitologist Jules Poirier [97]; it is prevalent in Thailand, Laos, Vietnam, and Cambodia.
It is a monoecious hermaphrodite [98] and requires three different hosts (two intermediate
and one definitive) to complete its life cycle. O. viverrini miracidia larvae infect freshwater
snails (Bithynia spp.) and grow into sporocysts in snail tissues. These sporocysts become
cercaria larvae, escape from snail tissues, and migrate towards fish, their second intermedi-
ate host. The flukes will then develop into metacercaria in the flesh of the fish. Ingestion
of raw, contaminated fish frees O. viverrini into their final host, where they migrate to-
wards the biliary tree and dominate the bile duct [99,100]. The flukes then cause CCA via
three mechanisms: mechanical and chronic injury to biliary epithelial cells, immunologic
inflammation via release of reactive oxygen intermediates and nitric oxide, and host cell
proliferation via parasite secretion products. In chronic infection, these will cause DNA
damage to the host cells and lead to tumorigenesis [101].

The parasites establish localization in biliary cells via securing their oral and ventral
suckers into the cell epithelia. This damages the host bile ducts, with the development of
ulcers as the infection progresses. The presence of the parasite and its secretion products
induce an immune reaction from its host, prompting the release of pro-inflammatory
cytokines mediated by toll-like receptor (TLR) signaling. Secretion products from the
fluke are usually proteins for nutrient digestion and host tissue invasion. Proteomic
investigations identified one of these proteins as Ov-GRN-1, a granulin-like parasite growth
factor that has been shown to cause aberrant growth of the biliary cells [102]. In addition,
thioredoxin and thioredoxin peroxidase are produced by this parasite to induce an anti-
apoptotic mechanism [103]. Intriguingly, secretion products from O. viverrini contribute
towards wound healing processes in the host to counter mechanical injuries caused by its
suckers on the cells. However, as the parasites feed continuously, complete recovery of the
biliary epithelial is not achieved.

Repeated cycles of cell division during incomplete wound healing subsequently
leads to DNA damage and genomic instability of the host. Whole exome sequencing
studies in O. viverrini-associated CCA patients revealed mutations in genes of canonical
carcinogenesis pathways such as TP53, KRAS, and SMAD4 [104]. Mutations in genes
associated specifically with CCA were also identified, these include RNF43, PEG3, BAP1,
ARID1A, MLL3, IDH1/2, GNAS, and ROBO2 [105]. Host genomic instability, together
with the presence of other carcinogenetic factors such as dietary nitrosamines (found in
salted or fermented fish, a common dish in southeast Asia), conduce a microenvironment
that is favorable for malignancies [101,105,106]. Of note, besides dietary nitrosamine,
O. viverrini-associated CCA cases carrying active H. pylori infections have been observed,
and hamster infection models showed an obligatory mutual relationship of the fluke with
the carcinogenic bacteria [107].

4.2. Clonorchis sinensis

Clonorchis sinensis, the Chinese liver fluke, is mainly found in East Asian countries
such as China, Taiwan, Korea, and Northern Vietnam [108]. Like O. viverrini, the parasite is
digenetic, with snails and cyprinid fish as intermediate hosts. It shares a similar mechanism
of infection and carcinogenesis as O. viverrini—by causing mechanical damage and chemical
irritation to its host.

In addition to mechanical damage, feeding of the frequently propagating parasites
at the bile ducts serves as mechanical obstruction, leading to metaplasia of the biliary ep-
ithelial cells. These cells will transform into mucin-producing cells that produce excretory-
secretory products (ESPs) and mucus in the bile [109]. At the same time, the presence of the
parasite at the biliary tree is recognized by host TLR-2 and -4, resulting in the production
of inflammatory cytokines and chemokines. These peptides were originally intended for
fluke elimination, however, they now contribute towards disease progression, causing
toxicity towards the host, and cholangiocyte damage [110].
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Production of ESPs from the parasite was found to induce metabolic oxidative
stress [103,110], activating inflammatory mediators such as NADPH oxidase, nitric oxide
synthase, lipoxygenase, cyclooxygenase, along with xanthine oxidase to generate free radi-
cals, exacerbating the inflammatory response mediated by NF-κB [111,112]. In particular,
the production of nitric oxide leads to host DNA damage by DNA repair inhibition and
cyclooxygenase stimulation [113,114]. Generated free radicals will subsequently cause
lipid peroxidation (LPO), a process that increases cell proliferation and deactivates cell
apoptosis. In addition, ESPs might trigger host transcriptome, proteome, and miRNA
expression changes via processes such as histone modification and mini-chromosome
maintenance (MCM) regulation [115]. In chronic infection, all the above factors contribute
to host genome instability and increased fragility to carcinogens, which, coupled with
environmental risk factors such as the consumption of dietary nitrosamines, will lead
to CCA.

5. Colorectal Cancer

Colorectal cancer (CRC) has affected more than 1.9 million people worldwide in the
year 2020 with 935,173 mortalities [1]. While diet such as frequent red meat consumption
and family history were reported to be associated with CRC, gut microbiome dysbiosis was
recently identified as a risk factor for CRC [116]. Several bacteria, such as Bacteroides fragilis,
Streptococcus gallolyticus, Streptococcus bovis, and Fusobacterium nucleatum have been reported
to have a higher abundance in CRC patients. Among them, F. nucleatum has been suggested
as a potential microbial carcinogen that initiates the development of CRC [117,118].

Fusobacterium nucleatum

Fusobacterium nucleatum are anaerobic Gram-negative bacteria that were first isolated
from the oral cavity. With the advent of gut microbiome profiling, it was discovered that
the bacteria can also colonize human intestines [119]; nevertheless, the movement of F.
nucleatum from the mouth to colon remains unclear. In 2013, Kostic et al. proved that
infection by F. nucleatum increases tumor cell multiplicity and recruits tumor-infiltrating
myeloid cells in an in vivo model. Accordingly, carcinogenic properties of the bacteria were
then reported, where the bacteria were found to enhance the proliferation of normal human
colon cells, subsequently triggering the epithelial-mesenchymal transition pathway [120].

Fusobacterium nucleatum contributes toward the development of CRC via a few path-
ways. The bacteria attach and invade colon endothelial cells via the FadA adhesion protein.
This causes the secretion of cytokines (IL-6, 8, 10, 18; TNF-α) and the expression of NF-κB,
creating a pro-inflammatory environment in the colon [121]. At the same time, macrophage
infiltration and methylation of the cyclin-dependent kinase inhibitor 2A, CDKN2A [122] oc-
curs in the tumor microenvironment. In addition, FadA binding of the host cell E-cadherin
receptor activates β-catenin signaling. This promotes tumor cell proliferation via increased
expression of oncogenes of the Wnt pathway and their transcription factors [118]. Chronic
infection activates the p38 gene which is crucial in the production of matrix metallopro-
teinase (MMP)-1, -9, and -13 for invasion as well as metastasis properties [123]. Besides
FadA, F. nucleatum harbors another virulence factor, Fap2, which binds to TIGIT, an in-
hibitory receptor on T cells and natural killer cells, protecting tumor cells from the host
immune system. Indeed, the bacteria were found to inhibit human T-cell responses toward
mitogens and antigens (immunosuppressive activities) [124], most probably via blockage
of the cell cycle mid-G1 phase [125].

Of note, in the case of CRC, cross-talk between microbial species might be important
in causing cancer. Other than F. nucleatum, bacteria such as Peptostreptococcus stomatis,
Parvimonas micra, and Akkermansia muciniphila have been found to be over-represented
in the gut mucosa of CRC patients [126–129]. The exact role of these bacteria in CRC
pathogenesis, however, remains to be investigated.
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6. Bladder Cancer

In 2020, more than 573,000 cases of urinary bladder carcinoma were newly reported
worldwide, followed by 212,536 mortalities [1]. The cancer includes urothelial carcinoma,
squamous cell carcinoma, and adenocarcinoma; some can involve more than one cell type.
In many parts of the world, squamous cell carcinoma can be caused by chronic irritation to
the bladder as a result of prolonged urinary catheter usage. Nevertheless, in the Middle
East and Africa regions, the cancer is associated with urogenital schistosomiasis caused by
Schistosoma haematobium parasites [130].

Schistosoma haematobium

Urogenital schistosomiasis is a medical condition caused by S. haematobium infec-
tions. This infection leads to chronic inflammation and the presence of blood in the
urine—hematuria [131], a condition associated with the development of bladder cancer. S.
haematobium was first discovered in the 1850s in Cairo, Egypt, and carcinogenic properties
of the parasite were later reported in the late 1880s [132,133]. Compared to other parasites,
this trematode lives in pairs (male and female) and undergoes sexual reproduction during
their life cycle. The free-swimming parasite could be acquired from freshwater environ-
ments, where it enters human hosts via skin penetration. This process is mediated by the
secretion of proteolytic enzymes [134]. Following this, the cercaria larvae will migrate to its
favorable site of infection (uterus, bladder, and prostate) for reproduction. Eggs of S. haema-
tobium can be traced from urine samples of infected patients; eggs that are deposited in the
bladder wall will cause damage and inflammation to the bladder lumen [135], increasing
the risk of bladder cancer.

In chronic infection, the stuck eggs induce a granulomatous host T helper 2 (TH2)
immune response due to prolonged inflammation, and urinary bladder irritation [136,
137]. H03-H-IPSE, a major ortholog of the interleukin-4-inducing principle (IPSE) protein
secreted by S. haematobium eggs, was found to induce urothelial cell proliferation in mouse
models with nuclear localization, driving the cells towards the S-phase of the cell cycle.
The protein also induces bladder angiogenesis [135] and allows the eggs to escape the
host immune system. All the above leads to urothelial hyperplasia, a pre-cancerous
lesion. In addition to its eggs, adult parasites have also been shown in xenogeneic animal
models to increase cell proliferation and migration, as well as to decrease apoptosis [135].
Nevertheless, a single exposure to a parasite antigen will not contribute to tumorigenesis,
suggesting the need for chronic infection to cause cancer in hosts. Interestingly, bacterial
and parasite co-infection in females was reported to increase bladder cancer risk, though the
mechanism of carcinogenesis is still unclear [130]. Indeed, urine microbiome dysbiosis in
urogenital schistosomiasis has also been reported in bladder cancer and other pathologies
of the organ [138].

In hosts, metabolism of parasite molecules, such as catechol estrogens and guanine-
derived oxidation products will lead to genotoxic effects such as mutation, DNA strand
breakage, and sister chromatid exchanges induced by the hydroxyl radical from inflam-
matory cells [130,139,140]. Chromosomes 1, 3, 5, 6, 7, 8, 9, 11, 14, 15, 17, 18, and Y are the
most frequent site with abnormalities observed in bladder cancer development [141,142],
where deletion in chromosome 9 has been associated with S. haematobium infections, lead-
ing to the loss of important protein function crucial in activating p53 and retinoblastoma
(Rb) pathways and anti-apoptotic programs [143,144]. Urogenital schistosomiasis will also
cause molecular perturbation via overexpression of the fibroblast growth factor receptor
protein 3, causing the aggressive proliferation of cells [143]. In addition, mutations in KRAS
have also been observed [145].

Due to its propensity to cause genetic and epigenetic changes that lead to cell hyper-
plasia and cancer, S. haematobium has been classified as a group I definitive biological car-
cinogenic agent by the IARC in 2012 [146]. Moreover, exposure to pro-carcinogenic factors such
as smoking and N-nitroso compounds (either from diet, or from dysbiosis of urine microbiome in
schistosomiasis) will increase bladder cancer risk in urogenital schistosomiasis [130,147,148].
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7. Cervical Cancer

Cervical cancer is mostly diagnosed among women at the age of 35 to 44 years old.
It is the fourth most frequent cancer reported globally with 604,127 cases in 2020 [1].
The burden of cervical cancer faced by low- and middle-income countries is significantly
greater than in high-income countries, and contributed to 341,831 deaths in 2020 [1,149].
Interestingly, cervical cancer is usually caused by infectious agents, namely the human
papillomavirus (HPV). Co-infections by Chlamydia trachomatis can initiate chronic infection
on the endocervical cells at the transformation zone, which exposes the cells to oncogenic
HPV infections [150].

Human Papillomavirus (HPV)

Human Papillomavirus is considered the principal etiological agent [151] and classified
as a carcinogen for cervical cancer. There are currently more than 200 HPV subtypes,
where they are classified as group I, IIA, IIB, and III carcinogens by the IARC. Amongst the
HPV subtypes, HPV 16 and HPV 18 have been described as potential human carcinogens
since 1983 [152]. Risk factors for HPV-associated cervical cancer include smoking and
sexual exposure with multiple sexual partners, where these partners in turn, also have
multiple partners [153].

All HPV subtypes are naked (non-enveloped) viruses with a small diameter (~55 nm)
and a circular double-stranded DNA genome [154]. The virus is epitheliotrophic, where,
after sexual contact (vaginal, anal, or oral) with an infected person, it will bind to heparin
sulfate proteoglycans on the cervical basal basement membrane through breaks in the
epithelium [155,156]. The virus will then be uncoated and directly transported to the host
nucleus for replication, where early proteins (E1–E7) and late capsid proteins (L1 and L2)
will be synthesized [157]. Episomal copies of the HPV genome will remain inside the
infected cells [158,159]. E1 and E2 will be expressed for the production of virions to invade
other neighboring cells while viral capsids aid viral movement inside the host cell during
infection [160]. The oncogenic properties of HPV are mostly conferred via E6 and E7.

During chronic HPV infection, integration of the virus genome inside the host cell
might occur, where cells will transition into cervical intraepithelial neoplasia grade I
(CIN-1). E6 and E7 proteins interfere with cell proliferation activity controlled by p53
and pRb, [161] and also inhibit cell cycle checkpoint control via cyclin-dependent kinase
(CDK) inhibitors (p21, p27, p16) [162]. These molecular events facilitate anti-apoptosis
activity, disrupt the DNA repair mechanism, and deregulate cell cycle control, driving
differentiating cells into the S-phase and rapid proliferation.

Lesions from CIN-1 may develop into CIN-2 or -3 in the space of 2 to 3 years. During
this development, abnormal proliferation of cervical cells will occur, driven by the upregula-
tion of genomics signatures such as those from the Kinesin family member (KIF23), Integrin
subunit alpha V (ITGAV), CDKN2A, and Centromere Protein E (CENPE). Particularly,
during the later CIN stages, proteins such as BUB1 mitotic checkpoint serine/threonine
kinase B (BUB1B), mitotic arrest-deficient 2 (MAD2L1), checkpoint kinase 1 (CHEK1), cy-
clins, and proteins involved in the cell division cycle are found to be highly regulated [163].
From CIN-3, further failure to prohibit cell proliferation will lead to invasive carcinoma.

8. Kaposi’s Sarcoma

Kaposi’s sarcoma (KS) is a rare cancer lesion that appears on the skin, mouth, and nose
lining, lymph nodes, or other vital organs. Globally, KS contributed 34,370 new cases
with 15,084 mortalities in 2020 [1]. The lesions are usually purple in color, and consist of
lymphatic endothelial cells or their precursors, which will develop into clonal metastases
of spindle cells in the advanced stage [164]. KS cases can be divided into four subtypes:
(1) epidemic, (2) classic, (3) endemic, and (4) iatrogenic [165]. Epidemic KS is associated
with the HIV/AIDS epidemic [166]. Classic and endemic KS refer respectively to cases
that occurred in elderly southern European and Middle Eastern males, and children
in equatorial, eastern, and southern African countries. Iatrogenic KS mostly occurs in
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organ transplant patients receiving immunosuppressive therapy. The causative pathogen
in KS has been identified as Kaposi’s sarcoma herpesvirus (KSHV), also referred to as
human herpesvirus 8 (HHV8) [167]. The virus was originally thought to co-evolve with
the human population; nevertheless, studies identified higher seroprevalence amongst
sub-Saharan Africans and Mediterranean populations compared to northern Europeans,
northern Americans, and Asians [168]. KSHV mother-to-child transmission or transmission
between siblings and playmates is common in endemic countries. On the other hand,
viral transmission has been reported to be more common in homosexual men with multiple
partners in non-endemic countries [169].

Kaposi’s Sarcoma Herpesvirus (KSHV)/Human Herpesvirus 8 (HHV8)

Following the discovery of its genome sequences in biopsies, KSHV was identified
as the causative agent for KS (IARC Class I carcinogen) [167]. The virus is a gammaher-
pesvirus with five major subtypes (A, A5, B, C, and D). Interestingly, the virus encodes
proteins homologous to its human host, such as cyclin, viral FLICE inhibitory protein
(vFLIP), B cell lymphoma 2 (BCL-2), IL-6, interferon regulatory factors, and chemokines,
where viral cyclin and vFLIP promote the proliferation of infected tumor cells during latent
infection [164]. Besides KS, KSHV is also associated with Castleman’s disease and primary
effusion lymphoma, both neoplasms of the lymphatic system.

Routes of KSHV transmission are still not elucidated, though it has been postulated
that the virus is transmitted via saliva, and upon host entry, infects a variety of cells, such as
endothelial cells, epithelial cells, and fibroblasts [170]. The virus can also infect cells of the
immune system including monocytes, B cells, and dendritic cells [171]. Once it enters the
target cell, KSHV will be uncoated, with its genome circularizing to become an episome in
the nucleus. It will then either become latent (causing lifelong infection) or undergo cycles
of lytic reactivation. Proteins from both stages can contribute to tumorigenesis. vFLIP and
viral miRNAs from the latent stage stimulate pathways such as NF-κB to increase host
cell survival and prevent apoptosis, while promoting vascular proliferation and leading to
inflammation [172,173]. These changes can also be caused by lytic proteins such as KSHV
vIL-6 via the expression of vascular endothelial growth factor (VEGF) and platelet-derived
growth factor (PDGF) [174–176].

Of note, although KSHV oncogenic proteins have been shown to prevent apoptosis in
experimental models, complete tumorigenesis events require the existence of co-factors,
such as intake of immunosuppression drugs by the host, or the presence of HIV virus
co-infection. HIV-1 encodes a transcriptional trans-activator, Tat, which increases KSHV
infectivity [177] and induces apoptosis of CD4+ T cells [178]. Another HIV protein, Nef,
regulates the AKT signaling pathway, facilitating angiogenesis and KSHV oncogenesis
by boosting levels of vIL-6 [179,180] and other cytokines (IFN-γ, TNF-α, IL-1), causing
reactivation of the KSHV life cycle via the JAK/STAT pathway [180,181].

9. Lymphoma

Lymphoma refers to blood malignancies that arise from lymphocytes (B cells, T cells,
and natural killer cells), with most lymphomas from B cell origin (90%) [182]. The cancer is
broadly divided into Hodgkin (10%) and non-Hodgkin (90%) lymphoma. The total cases re-
ported for lymphoma in 2020 is worrying, with 627,439 newly diagnosed cases and 283,169
fatalities [1]. Patients usually experience enlarged lymph nodes, night sweats, weight loss,
and tiredness. Oncogenic mutation(s) in lymphocytes followed by clonal propagation has
been reported in lymphomas [183], where age, male gender, and an impaired immune
system have been identified as risk factors [184,185]. In addition, infection by pathogens
such as human T-cell leukemia virus, HHV8, H. pylori, HCV, and EBV has been reported to
be associated with lymphoma. Among these, EBV has been shown to cause a variety of
lymphomas, including Burkitt’s lymphoma (BL) and Hodgkin lymphoma (HL) [186].
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Epstein-Barr Virus (EBV)

Epstein-Barr virus-associated lymphomas usually occur during childhood (asymp-
tomatic) with a progression towards infectious mononucleosis during adolescence. Primary
infection occurs via the oral route, leading to viral entry and replication in the oral mucosal
epithelium and B cells, where it enters the lytic phase. EBV may also enter pharyngeal
lymphoid tissues, where the virus will switch to its latent phase [187] as episomes, and life-
long infections occur in the presence of latent membrane proteins (LMP) expression [11,15].
Infected cells carry EBNA, LMP, EBV-encoded RNA (EBER), and EBV miRNAs [188,189].

Cases of EBV-associated BL are mostly reported in regions where malaria is hyperen-
demic [190]. Malaria infection activates the host immune response to produce B cells and
translocation of c-MYC, leading to increased B cell proliferation [191]. Together with muta-
tions in ARF-MDM2-p53 pathways, p53-dependent apoptosis events are prevented [188].
EBNA-1 possesses oncogenic properties which cause high levels of ROS production and
increased NOX2 catalytic subunits of the NADPH oxidase, leading to genetic instabil-
ity [192]. Lymphocyte immortalization is further controlled by EBNA-2 nuclear protein via
the expression of cellular proteins such as EBV receptor/CR2 (CD21) [193]. During latent
infection, EBV has been reported to convert human B cells to become lymphoblastic cell
lines (latency III infection) via aggressive lymphoblast proliferation [194,195].

In contrast, EBV-associated HL is characterized by the formation of multinucleated
Reed-Sternberg (HRS) cells or mononucleated Hodgkin cells derived from B lympho-
cytes [188]. Most HRS cells possess a defective rearrangement of their B cell surface,
disrupting normal cell signaling functions [196]. LMP-1 and LMP-2 are highly expressed
in HRS, where these proteins complement cell surface defects and play a vital role in their
survival [197,198]. In addition, genetic mutations such as translocation of CIITA (MHC2TA)
have been observed in 15% of HL cases [199]. These mutations cause further disruptions in
lymph node structure and cause the infiltration of non-neoplastic inflammatory-cells, in-
creasing the release of various inflammatory cytokines (IL-1, IL-6, TGF-β, and TNFα) [188].

10. Implication of Infectious Agents in Carcinogenesis and Future Considerations

It is now evident that some cancers, even though not categorized as infectious diseases,
can be caused or further exacerbated by infectious agents via various carcinogenesis path-
ways (Table 1). This discovery has a few implications. Firstly, some of these cancers may be
prevented with vaccinations or other public health measures that prevent the human host
from coming into contact with cancer-causing pathogens. In addition, periodical screening
or infection surveillance in patients and intake of drugs, such as antimicrobials may help
to prevent pre-cancerous lesions from worsening.

Vaccinations against HBV and HPV infections have contributed to the lowering of
hepatitis (and subsequently, HCC) and cervical cancer incidences. The implementation of
infant HBV vaccination programs in many countries since 1995 has significantly reduced
the incidence of pediatric hepatitis and primary liver cancer [200]. On the other hand,
as cervical cancer is mostly a sequela of HPV infection, it is projected that high vaccine
coverage will enable the global elimination of this cancer [201]. Other public health mea-
sures have also proved important in controlling infections by cancer-associated pathogens
and thereby lowering cancer incidence. Establishing good regulating systems of staple di-
etary foods and improving storage conditions of crops will reduce Aspergillus transmission
and GC [84–86]. Snail control to prevent schistosomiasis infections has been shown to be
effective in reducing parasite infection [202,203]. In Thailand, behavioral-psycho-social
interventions are being carried out to increase public awareness of the risks of raw fish
consumption to reduce fluke infections and CCA [204].

Pathogen biomarker-based screening for patients has been integral in the detection
and monitoring of infected patients, paving the way for early intervention to prevent
tumorigenesis. Prior to HPV vaccination, Papanicolaou (Pap) smears with HPV tests allow
for the detection of precancerous lesions and contribute to the lessening of cervical cancer
burden. Indeed, Pap smear screening is still important even after HPV vaccination and is
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recommended to be carried out every 3 or 5 years, according to risk factors of the popula-
tion [205]. Endoscopic surveillance involves the monitoring of the gastric environment to
detect cellular changes, due to H. pylori and EBV infections [20,21], where the treatment
of patients using antibiotics (H. pylori) to lower GC risk [206], or immunotherapy using
checkpoint inhibitors (EBV) for treatment of GC [45] (which is currently being tested in
clinical trials), can ensue for positive cases. Besides antibiotics, antimicrobials such as
antivirals have been found to prevent pre-malignant stages of virus-associated cancers,
such as IFN-free anti-viral therapies for HCV [207], zidovudine and valganciclovir for
KSHV [208], and anti-worm medication such as praziquantel or albendazole to eliminate
flukes and schistosomiasis [209].

Table 1. Carcinogenesis mechanism and prevention/treatment strategies for infection-associated cancers.

Pathogen Type of Cancer Carcinogenesis Mechanism Prevention/Treatment

Helicobacter pylori Gastric

• Disruption of the cellular mechanism via
tyrosine phosphorylation of SHP-2 and
kinases mediated by CagA secretion

• Induction of epithelial vacuolization, T-cell
activation, and proliferation by VacA

• Endoscopic surveillance
• Antibiotics (amoxicillin,

clarithromycin, metronidazole,
tetracycline, tinidazole)

Epstein-Barr Virus
(EBV) Gastric

• Viral integration into the host genome
mediated by B cell

• Cell proliferation and migration promotion
by Viral EBER-1 and -2 transcript

• ROS accumulation and subsequent DNA
modification via viral EBNA1 induction

• CpG island methylation, tumor suppressor
genes, and tumor-associated antigens
inactivation via viral LMP2A

• Cancer proliferation, apoptosis inhibition,
and IFN signaling suppression via EBV
miRNAs

• Immunotherapy (checkpoint
inhibitors)

• Antivirals (acyclovir, ganciclocvir,
valgancyclovir, omaciclovir,
valomaciclovir, maribavir, cidofovir,
thymidine derivatives)

Hepatitis B Virus
(HBV) Liver

• Chromosomal instability, mutagenesis,
and cis-activation of tumor-associated genes
due to viral-host genome integration

• miRNA expression alteration, histone
methyltransferases activity, and cell
expressions pattern dysregulation by HBx
protein

• Vaccination
• Antiviral therapy (lamivudine,

adefovir, entecavir, telbivudine,
tenofovir, emtricitabine, standard,
and PEG-IFN)

Hepatitis C Virus
(HCV) Liver

• Interference in metabolic reprogramming of
hepatocytes

• Activation of PI3K/AKT pathway by NS5A
phosphoprotein

• Blockage of tumor suppressor gene activity
by HCV proteins

• Activation of ROS by NOX-1 and -4
• Activation of inflammatory pathways and

cytokines

• Reducing the risk of exposure
(single-use needles for intravenous
drug injection, protection during
sexual intercourse)

• Antiviral therapy (simeprevir,
sofosbuvir, ledipasvir-sofosbuvir,
ombitasvir-paritaprevir-ritonavir-
dasabuvir, sofosbuvir-velpatasavir,
sofosbuvir-velpatasvir-voxilaprevir,
glecaprevir-pibrentasvir, ribavarin)

Aspergillus spp. Liver
• Formation of DNA adducts via activation of

microsomal enzymes by aflatoxins
• Clonal expansion of hepatocytes

• Food safety and storage
management (high temperature,
gamma rays)

• Detoxification agent (bacteria:
Pleurotus eryngii; plant extract:
Adhatoda vasica Nees)

• Chemical treatment (novasil clay
mineral, chlorophyll)
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Table 1. Cont.

Pathogen Type of Cancer Carcinogenesis Mechanism Prevention/Treatment

Opisthorchis
viverrini Bile Duct

• Mechanical and chronic injury of biliary
epithelial cells due to parasite
attachment

• Inflammation due to parasite product
secretion

• Abnormal growth of biliary cells caused
by Ov-GRN-1 protein

• Anti-apoptotic mechanism induction
via thioredoxin and thioredoxin
peroxidase production

• Incomplete wound healing due to DNA
damage and chromosomal instability

• Mutagenesis in canonical
carcinogenesis pathways

• Proper food preparation (avoid
consumption of raw fish)

• Antiparasitic (praziquantel,
albendazole)

Clonorchis sinensis Bile Duct

• Host biliary cell metaplasia due to
chronic mechanical irritation by
parasite attachment

• Oxidative stress, host transcriptome,
proteome, and miRNA expression
changes due to ESPs

• Host DNA damage by genotoxins
• Cell apoptosis deactivation and

abnormal cholangiocytes proliferation
due to lipid peroxidation

• Proper food preparation (avoid
consumption of raw fish)

• Antiparasitic (praziquantel,
albendazole)

Fusobacterium
nucleatum Colorectal

• Cytokine production activation via
FadA–E-cadherin adhesion

• Macrophage infiltration and CDKN2A
methylation

• Cell proliferation activation via
β-catenin and Wnt pathway
upregulation

• Cancer cell invasion via MMP-1, -9,
and -13 production

• Host immune system evasion via
attachment of Fap2 to immune cells

• Antibiotics (piperacillin,
amoxicillin-clavulanate,
clindamycin, imipenem,
metronidazole)

• Chemotherapy (COX-2 inhibitor,
specific EP2 antagonist)

• Immunotherapy (anti-Fap2
antibody, CTLA-4, PD-1, miR-21
blockade, adoptive cell transfer)

Schitosoma
haematobium Bladder

• Granulomatous host Th2 immune
response induction via chronic egg
deposition

• Urothelial cell proliferation and bladder
angiogenesis by H03-H-IPSE protein

• Mutation, DNA damage, and sister
chromatid exchanges via parasite
metabolites

• Excessive cell proliferation due to
FGFGR3 overexpression

• Snail control
• Water treatment (chlorine)
• Antiparasitic (praziquantel,

albendazole)

Human
Papillomavirus

(HPV)
Cervical

• Tumor suppressor genes interference by
E6 and E7

• Cell cycle check point control inhibition
• Anti-apoptosis induction, DNA repair

mechanism disruption, abnormal
proliferation, cell cycle dysregulation

• KIF23, ITGAV, CDKN2A, CENPE,
BUB1B, MAD2L1, CHEK1, cyclin,
and cell cycle proteins upregulation at a
late stage

• Vaccination
• Protection during sexual

intercourse
• Regular screening (Pap smears)
• Surgical procedure (cryotherapy,

electrocautery, surgical removal,
laser surgery)
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Table 1. Cont.

Pathogen Type of Cancer Carcinogenesis Mechanism Prevention/Treatment

Kaposi’s Sarcoma
Herpesvirus

(KSHV)
Kaposi’s Sarcoma

• Proliferation of cancer cells by vFLIP
• Apoptosis prevention, vascular

proliferation, and inflammation via
vFLIP, vIL-6, and/or viral miRNAs

• Reducing the risk of exposure
(avoid unprotected sexual
intercourse)

• HAART treatment (for HIV
patients)

• Antiviral therapy (valgancilovir,
foscarnet, zidovudine)

• Radiotherapy
• Immunotherapy
• Chemotherapy (liposomal

anthracyclines)
• Inhibitor agent (mTOR inhibitor,

proteasome inhibitor, paclitaxel,
MMP inhibitor, anti-angiogenic
agents)

Epstein-Barr Virus
(EBV)

Lymphoma

Burkitt’s Lymphoma

• Apoptosis inhibition via p53 mutations
• Genetic instability due to ROS and

NOX2 production via EBNA1
• Lymphocyte immortalization regulation

via EBNA2
• B to lymphoblastic cell line generation

due to chronic infection

• Avoid body fluid transfer from
infected patients

• Small molecule inhibitor
(EBNA1 inhibitor,
HDAC inhibitors, butyrate and
GCV, bortezomib,
CDKs inhibitors, PI3K inhibitors,
BCL-2 inhibitors,
mTOR inhibitors, ixazomib)

• Immunotherapy (immune
checkpoint inhibitors)

• Cell therapy (monoclonal
antibodies, T-cell therapy)

Hodgkin’s Lymphoma

• Formation of multinucleated HRS cells
from B lymphocytes

• Cell signal disruptions due to defective
HRS cells

• Increased HRS cell survival due to
LMP-1 and -2 expression

• Lymph node structure disruption and
cytokine activity increment due to
CIITA mutagenesis

Moving forward, multiomics studies into pathogens coupled with molecular editing
will further contribute towards the discovery of better vaccination and treatment targets,
along with improved strategies for pathogen detection, control, and elimination. This will
enhance the prevention, early detection, and treatment of associated cancers. In addition,
treatment using oncolytic viruses that infect and kill targeted cancer cells will also be a new
paradigm in cancer therapy.

11. Conclusions

Infection by some pathogens may trigger carcinogenesis pathways that lead to can-
cer in susceptible individuals. Identification of pathogens that can function as human
carcinogens, understanding how exposure to these pathogens occurs, and the subse-
quent carcinogenic mechanisms they trigger will be important. Knowledge in these areas
will provide useful clues for successful pathogen-associated cancer management, control,
and ultimately, prevention.
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